

Number - addition and subtraction

Number - multiplication and division
solve problems, including missing number problems, using \quad solve problems, including missing number problems, using number facts, place value, and more complex addition

Missing numbers should be placed in all possible places:

$$
\begin{array}{rlr}
3+4= & =4+3 \\
3+=7 & 7=+4 \\
4+=7 & 7=3+ \\
+\nabla=7 & 7=+\nabla
\end{array}
$$

Use all the models and images mentioned above. Discuss which is most effective and why

Singapore Bar Method

estimate the answer to a calculation and use inver se

 oper ations to check answersEstimate answers before solving any calculation Once inverse operation has been learnt use as a method for checking

use a variety of language to describe addition

+, add, addition, more, plus, make, sum, total, altogether score, double, near double, one more, two more... ten more... one hundred more, how many more to make...? how many more is... than...? how much more is...?
$=$ equals, sign, is the same as
tens boundary, hundreds boundary

Use all the models and images mentioned above. Discuss which is most effective and why.

Singapore Bar Method

number facts, place value, and more complex subtraction

Missing numbers should be placed in all possible places:

$$
\begin{array}{ll}
16-9= & =16-9 \\
16-=7 & 7=-9 \\
--9=7 & 7=16- \\
--\nabla=7 & 7=-\nabla
\end{array}
$$

estimate the answer to a calculation and use inver se

 operations to check answersEstimate answers before solving any calculation Once inverse operation has been learnt use as a method for checking
use a variety of language to describe subtraction

- subtract, subtraction, take (away), minus, leave, how many are left/left over? one less, two less... ten less. one hundred less, how many fewer is... than...? how much less is...? difference between, half, halve
$=$ equals, sign, is the same as
solve problems, including missing number problems, involving multiplication, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects
solve simple problems in contexts, deciding which of the four operations to use and why

Missing numbers placed in all possible places

$7 \times 2=$		$=2 \times 7$
$7 \times=14$	14	$=\times 7$
$-\times 2=14$	14	$=2 \times$
$-\times \nabla=14$	14	$=\times \nabla$

Extend to
$2 \times 6=3 \times$
and using three numbers
$10 x \quad x=60$
$12=2 \times \times 2$
Use all the models and images mentioned above. Discuss which is most effective and why

Singapore Bar Method

write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods

See models and images above use a variety of language to des cribe multiplication
count, count (up) to, count on (from, to), count back (from, to), count in ones, wos, threes, fours, fives... count in tens, hundreds, lots of, groups of, , times, multiply, multiplication, multiplied by, multiple of, product, once, twice, three times... ten times...times as (big, long, wide and so on), repeated addition, array, row, column
solve problems, including missing number problems, involving division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects
solve simple problems in contexts, deciding which of the four operations to use and why

Missing numbers placed in all possible places

$6 \div 2=$	$=6 \div 2$
$6 \div=3$	$3=6 \div$
$-\div 2=3$	$3=\div 2$
$-\div \nabla=3$	$3=\div \nabla$

Extend to
$12 \div 6=8 \div$
and using three numbers
$10 \div 5 \div=1 \quad 3=12 \div \div$

Use all the models and images mentioned above. Discuss which is most effective and why.

Singapore Bar Method

write and calculate mathematical statements for division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to for mal written methods

See models and images above.
use a variety of language to describe division
Array, row, column, halve, share, share equally, one each two each, three each... group in pairs, threes... tens, equal groups of, \div, divide, division, divided by, divided into, left, left over, remainder
$=$ equals, sign, is the same as

