e.g. $12462-2300=10162$)
 Partition both numbers and recombine

$2358+773$
$=2000+300+50+8+700+70+3$
$=2000+1000+120+11$
$=3000$
=3131
Partitioning with number lines

Partition second number only into Partition second number only into
hundreds, tens and ones and recombine
$2358+773=2358+700+70+3$ $=3058+70+3$
$=3058+70+$
$=3128+3$
$=3128+$
$=3131$
Add the nearest multiple of 10 or
100 , then adjust
$458+79=458+80-1$
add numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction - see Appendix 1)

Column addition
$\begin{array}{ll}124.90 & \text { (add in a zero to keep } \\ 117.25 & \text { the place value) } \\ 11 & \end{array}$

$\underline{242.15}$

To ensure conceptual understanding, it is essential that place value is reinforced by frequently.
Discuss the value of each digit
Use base 10 (Diennes) to support understanding of exchanging and to ensure conceptual understanding of place value.
Where there is an 'empty' space in a decimal column, pupils should insert a zero to show the value.
Children should be made aware that it is essential to align the columns carefully.

$$
\begin{array}{ll}
3.25 & \text { pupils should be able to } \\
4.13 & \text { add more than } 2 \text { numbers } \\
0.76 & \text { using the column method }
\end{array}
$$

(e.g. 12462 - 2300
$=10$ 162)
Subtract the nearest multiple of 10 or
100, then adjust
$458-79=458-80+1$
$=378+1$
-379
Find a difference by counting up
8006-2993: 50013

Use known number facts and place value to subtract (partition second number only)
12462-2300
$=12462-2000-300$
$=10462-300$

10462
10162
subtract numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction - see Appendix 1)

Revision of formal compact column method extending to calculations ${ }^{2} Z^{\prime \prime} X{ }^{1} 0$ '\$ ' 6 | involving numbers with more than $4-2128$ |
| :--- |
| digits (use Diennes to | digits (use Die of secomposition and place value).

When confident in using formal compact column method with integers and decimals involving money (always 2 decimal places), extend to subtraction with mixtures of integers and decimals. A clear understanding of place value is essential. Align the decimal point and use 'place holders', if needed.

$$
\begin{aligned}
5 / 1 \not / 1 & \begin{array}{l}
\text { Use Diennes or place value } \\
\text { counters (add counters with 0.1) to } \\
263.0
\end{array} \\
\begin{array}{l}
\text { cont } \\
26.5
\end{array} & \begin{array}{l}
\text { support understanding of } \\
\text { decomposition and place value. }
\end{array} \\
\hline 236.5 &
\end{aligned}
$$

multiply
Partition
Partition
$47 \times 6=(40 \times 6)+(7 \times 6)$
$=(240)+(42)$
$=282$
Partitioning
$72 \div 3=(60 \div 3)=(12 \div 3)$
$=20+4$
$=24$
Double and halve
$25 \times 16-50 \times 8=100 \times 4=200 \times 2=400$
multiply whole numbers and those inv olving decimals
by 10,100 and 1000 Place Value

10,100 and 1000 Place Value

identify multiples, (and use them to construct equivalence statements) e.g.
$2 \times 2 \times 35$
$=4 \times 35$
$3 \times 3 \times 9 \times 10=9^{2} \times 10=3 \times 270$
Use a variety of resources (including a calculator) to investigate multiples. Make models and images to display facts.
recall prime numbers up to 19
establish whether a number up to 100 is prime
Play games, chant, test etc to increase speed of recalling facts. Make models and images to display facts. Investigate patterns within primes and use the 100 grid
recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$)
Use a variety of resources (including a calculator) to investigate square and cubed numbers. Make models and images to display facts.
nvestigate the patterns within squared and cubed numbers.

multiply numbers up to 4 digits by a one- or two-digit

 number using aformal written method, including long multiplication for two-digit numbers| 452 | 1243 |
| :---: | :---: |
| $\times 3$ | $\times \quad 8$ |
| 1 | 132 |
| 1356 | 9944 |

Review formal method of short multiplication (for multiplying by one digit numbers) when proficient

Move onto formal long multiplication:

34
$\times \quad 14$

\times| 1 |
| :--- |
| 102 |

$+340$
442
divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context (as fractions, as decimals or by rounding (for example, $98 \div$ $4=98 / 4=24$ r $2=241 / 2=24.5 \approx 25$)
Bus shelter method (short division)
86 r 2

5 \begin{tabular}{l}
$43^{3} 2$

Pupils should consider

whether remainders should

be left as a reminder,

rounded to the nearest

whole or converted into a

decimal or fraction.
\end{tabular}

$4 \longdiv { 4 5 ^ { 1 7 . 2 5 } . 0 0 }$

Introduce long division (dividing by single digits)
$256 \div 7$ lies between $210 \div 7=30$ and $280 \div 7=40$

256		
$-\frac{70}{186}$	(10 groups)	or (10×7)
$\frac{140}{46}$	(20 groups)	or (20×7)
$-\frac{42}{4}$	$\frac{(6 \text { groups })}{}$ or (6×7)	
$(36$ groups $)$ or (36)		

solve addition multi-step problems in contexts, decidin which operations and methods to use and why

Use all the models and images mentioned above. Discuss which is most effective and why

Singapore Bar Method

Solve problems that use multiplication and division as inverses, for example, by multiplying and dividing by powers of 10 in scale drawings or by multiplyng and dividing by powers of a 1000 in
such as kilometres and metres

Use all the models and images mentioned above Discuss which is most effective and why

Singapore Bar Method

use and explain the equals sign to indicate equivalence,

including missing number problems (e.g, $13+24=12+25 ; 33=5$ x [])
express distributivity, for example as $a(b+c)=a b+a c$
Use all of the models and images above to inv estigate a range of statements, ensuring the equals sign is in different positions. Allow time for discussion and reasoning. Display solutions and reasoning. Also use errors or misconceptions as a starting point.
use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy

Estimate answers before solving any calculation. Check against estimate after calculating (and use use a variety of language to describe multiplication know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers
lots of, groups of, times, multiply, multiplication, multiplied by, multiple of, product, once, twice, three times... ten times... times as (big, long, wide... and so on), repeated addition, array, row, column, double,, inverse, prime,

Solve problems that use multiplication and division as inverses, for example, by multiplying and dividing by powers of 10 in scale drawings or by multiplying and dividing by powers of a 1000 in converting between units such as kilometres and metres

Use all the models and images mentioned above. Discuss which is most effective and why.

Singapore Bar Method

use and explain the equals sign to indicate equivalence,
use and explain the equals sign to indicate equivalence, x [])
Use all of the models and images above to inv estigate a range of statements, ensuring the equals sign is in differen positions. Allow time for discussion and reasoning. Display solutions and reasoning. Also use errors or misconceptions as a starting point
use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy

Estimate answers before solving any calculation. Check against estimate after calculating (and use Cinverse check.
use a variety of language to describe division
Array, row, column, halve, share, share equally one each, two each, three each... group in pairs, threes... tens, equal groups of, div ide, div ision, div ided by, divided into, remainder, factor, quotient, divisible by, inverse. Prime, factors
equals, sign, is the same as

