3.1 Australasia: Australia		
Target	Explanation	Can your child...
I can find 10 or 100 more or less than a given 3 digit number.	Say the number that is 10 more or 10 less of a given 3 digit number	What is 10 more than 342? ... 352 Use place value to check answer. (the 4 changes to a 5 because I am adding one ten in the tens column)
I can read and write numbers up to 1000 in words and numbers.	When writing the number they must be spelt correctly.	342 three hundred and forty two
I know all sums and differences of multiples of 10 up to 100	$\begin{aligned} & 20+80=100 \\ & 50+50=100 \\ & 100-30=70 \\ & 100-10=90 \end{aligned}$	Twenty add what makes 100? $\begin{aligned} & 30+\quad=100 \\ & 100-40= \end{aligned}$ What is the difference between 30 and 100 ? Can you write this as a sum? (100- $30=70)$
I can compare and order numbers up to 1000.	$\begin{array}{\|l\|} \hline 750>399 \\ 44<444 \\ 230,237,481,499,698 \end{array}$ Great than > Less than < Equal to =	Put these numbers in order from smallest to biggest? ... Fill in the missing symbol ... 45 \qquad 98 300 \qquad 782 $30+\overline{60 _} 45+45$
I can count from 0 in 50s and 100s		$\begin{aligned} & 0,50,100,150,200,250 \ldots \\ & 0,100,200,300 \ldots \end{aligned}$
I can recognise the place value of each digit in a 3 digit number	$365=300+60+5$	Understand H T U 487 - The 4 represents 400 and the 8 represents 80 and the 7 represent 7 ones/units.
I know all the multiplication and division facts for 3s	$\begin{aligned} & 4 \times 3 \\ & 7 \times 3 \\ & 20 \div 3 \\ & 14 \div 3 \end{aligned}$	What is 4 times 3? 2 times 3 ? Recall 7 lots of 3,12 lots of 3 ? What is the missing number: _ $\times 3=21$? How do you know?

3.2 Australasia: New Zealand		
Target	Explanation	Can your child...
I know all number bonds that total 100		$68+32=100$
I can tell the time to the nearest 5 mins	Read an analogue clock	If the time is 3:16 then the time is quarter past 3. If the time is 4:34 then that time is 25 to 5.
I can count from 0 in 8 s.	$0,8,16,24 \ldots$	
I know all multiplication and	4×4 7×4	What is 4 times 4? 2 times 4? Recall 7 lots of 4, 12 lots of 4?

division facts for 4 up to 4×12 or $48 \div 4$	$20 \div 4$ $14 \div 4$	What is the missing number: $_\times 4=24 ?$ How do you know?
I can round any 3 digit number to the nearest 10 or 100.		341 round to the nearest 10 is 340 572 rounded to the nearest 100 is 600

3.3 Australasia: Papua New Guinea		
Target	Explanation	Can your child...
I can add and subtract numbers in my head, including a 3 digit number and tens and units		$\begin{aligned} & 361+1= \\ & 526+3= \\ & 757+10= \\ & 324+70= \\ & \\ & 675-4= \\ & 875-4= \\ & 574-30= \\ & 694-60= \end{aligned}$
I can add and subtract multiples of 100 from a 3 digit number		$\begin{aligned} & 687+200= \\ & 573+100= \\ & 957-500= \\ & 672-400= \end{aligned}$
I can count up and down in tenths and know that $1 / 10$ s are made by dividing by 10 .	$1 / 10$ of 100 is 100 divided by 10 . $1 / 10$ of 100 is 200 divided by 10	$\begin{aligned} & 1 / 10,2 / 10,3 / 10,4 / 10 \ldots \\ & 1 / 10 \text { of } 100=10 \\ & 1 / 10 \text { of } 200=20 \\ & 1 / 10 \text { of } 300= \\ & 1 / 10 \text { of } 700= \end{aligned}$
Know by heart all multiplication and division facts for 8 up to 8×12 or $96 \div 8$	$\begin{aligned} & 4 \times 8 \\ & 7 \times 8 \\ & 20 \div 8 \\ & 14 \div 8 \end{aligned}$	What is 4 times 8 ? 2 times 8 ? Recall 7 lots of 8,12 lots of 8 ? What is the missing number: $\times 8=24$? How do you know?
I can read roman numerals to 12	$\begin{aligned} & I=1 \\ & V=5 \\ & X=10 \end{aligned}$	$\begin{aligned} & 3=\mathrm{III} \\ & 4=\mathrm{IV} \\ & 7=\mathrm{VII} \\ & 9=\mathrm{IX} \\ & 12=\mathrm{XII} \end{aligned}$

